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SUMMARY

The objective of the research work presented in this report was to evaluate existing
finite difference methods and select and apply the one most appropriate for conputing the

propagation of multiple shock waves in a two-phase rocket combustion chamber,

In order to be acceptable for the intended application, a finite difference integration
scheme must: preserve the high frequency content of the waveforms; be relatively
nondissipative and nondispersive after many wave cycles; be capable of describing a shock
wave as a sharp discontinuity; and be capable of properly treating the reflection of shock

waves from boundaries and the partial reflection and transmission ot discontinuities.

The finite difference schemes of the Split Coefficient method, the X -scheme, Rubin
and Burstein, MacCormack, Lax-Wendroff, Godunov, Rusanov, the Flux-Corrected-Iransport
scheme of Boris and Book, Chorin's implementation of Glimm's Method, the Hybrid scheme
of Harten and Zwas and the Artificial-Compression method of Harten were evaluated. All

of these schemes are finite difference approximations to the derivatives arising in the

conservation laws and can treat an arbitrary system of conservation laws.

As a first step in evaluating the potential of these schemes, they were utilized in the

solution of the shock tube problem for the one~dimensional tulerian fornn of the jas

1
dynamic conservation equations for an inviscid, non heat-conducting fluid and for the
solution of the linear wave equation problem., The final test problem was the solution of
the one-dimensional nonlinear hyperbolic equations describing finite amplitude wave and L

shock propagation in a closed end tube. In addition, the ability to spectrally analyse the
conputed results was developed. This capability simplifies the interpretation of the
complex waveforms and facilitates comparisons among the various finite difference

integration schemes.

The results of applying several of the above mentioned schemes to the last test case
are presented and discussed in this report. It had been concluded that for the present
problem, a method based upon the combination of the Lax-Wendroff, tiybrid and Artificial

Compression scheme was found to be superior to the other schemes tested.  This scheme

was incorporated into the nonlinear instability program developed by !evine and Culick that

described the combustion and flow inside a solid rocket motor.  Finally, the ability of this
scheme to treat various initial disturbances in a solid rocket motor suca as a first mode

disturbance and standing or traveling pulses, is demonstrated.
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SECTION 1
INTRODUC HON

lhis report presents the results ot an investigation designed to select a satistactory
method tor computing the propagation of steep-fronted shocklike waveforms in a two-phase

rocket combustion chamber.

lactical solid rocket motors are  frequently subject to a combustion instability
problem at some point in the desizn cycle.  when instability is encountered, it can tahe
one ot several torms, e.g., linear or nonlinear, longitudinal or tangential. Gver the last
twenty years, considerable resources have been expended to understand, predict, control,
and eliminate cowmbustion instability in solid rocket motors.  Most of this effort has been
devoted to linear instability problems, and as a result, such probltens can now be tredted
in a rational, cost eftective manner. In cauparison, little work has been accomplished
towards the understanding and resolution of nonlinear combustion instability problecas.
Thus, when nonlinear instabilities are encountered, the solution is too otten an expensive

cut-and-try process.

Linear instability is characterized by small amplitude, sinusoidal oscillations that
originate from the amplification of infinitesimal random disturbances in the motor chamber.
Nonlinear instability is  usually  characterized by large amplitude oscillations  having
steep~fronted, shocklike waveforms, and is initiated by random tinite amplitude events such
as the expulsion ot an igniter or insulation tragment through the nos/zle. Nonlinear
instabilities are modeled using both "exact” and "approximate” mathematical technigues,
Ine "exact” methods of Levine and (iulick,1 and those ot hooker and /II\H,Z seek to solve
numerically the nonlinear partial ditterential equations poverning both the mean and tioe
dependent  tlow in the combustion chamber, as well as the combustion response ot the solig

. R 3 4 o
propeliant. he  Mapproximate” methods ot Cuolick, ana ot Howell,  etaal,, utilize

1. levine, J. Ny oand Culick, te e Co, "Nonlinear Analysis ot Solid Kocket Caombustion
Instability,” AFRM  lechnical Report TR-74-49, October 1974,

2o hooker, e beoand Zmn, e L., "Numerical solution ot Awaal Instabilittes m solid .
Propellant Rocket Motors,” 10th JANNAE Combustion seeting, Volo 1, Naval var College,
Newport, Kelo, August 1973, CPIA Pub. 243,

/
s Culick, bo te G, "Nonlinear Behavior ot Acoustic viaves in Cambustion « harabers,” 10th
JANNAL Combustion Meeting, Vole 1, Naval war College, Newport, Role, Aagust 1975,

4. towell, . A, Padmanaonan, M.oS, and Zaan, Be L " Approximate Sonlinear wnahvsis o
Sohid Rocket otors andg T =-Bumers,” ATRIT - 1&-77-44, luly 1977,




perturbation techniques  and  harmonic  analysis  to reduce  tiw  governmg  ditterential
equations. tachi of these nethods has certain aavantages, disadvantages, and litaitations.
the two classes of approaches complement ecach other, and ettorts to develop both turther

are warranteds

The existing “exact” nonlinear instability programs were developed about seven years
ago and are not capable of treating the multiple shock steep-tronted type ot istathitees
that occur in reduced and minmm  smoke  tactical motors developed  since then. I he
opjective 01 the present research is to extend andg improve the "exact” model develapea by
Levine, et. dl.,:) N reterence 1 to the point where it can be used by motor designers as a
tool to aig in the etficient resolution ot such nonlinear longitudinal nstability froble as.
The tirst phase of this rescarch, the results ot which are reported hercein, was devoted to
improving the tinite difference numerical technique used to solve the equations  sovieming,

wave propagation in the combustion chamber.

in order to be acceptable tor the intended application, a tinite ditference technioue
must (@) preserve  the high-frequency  content  of  the wavetorms; (b, be relatively
nondissipative and non-dispersive atfter many wave ovcles, (¢; be capable of descriang a
shock wave as a sharp discontinuity  without zenerating  overshoots  or undgersioots  gpon
crossing the discontinuity; and (d) ve capable ot partiol retlection and transmission  at
arcea discontinuities, It should be pointcd out that in solving a4 combustion iostabihity
problen, numerically  induced pre-  and post-shock  "wiggles™ 0o not just dtapair the
accuracy of the solution but coula also talselyv "trigeer® nonlinear mstabilitios ana torce

A

the scheme to pick a nonphysical solution.

It is very difticult tor any single tinite ditterence scheme to o satisty all ot the
atorementioned  requirenients  sunultaneously . Far exanple, several artiticral viscosity
Sch(um's(’ have been developed to damp pre= and post=shock oscillations. towever ) sach
artificially introduced dittusion alse smears out the discontinuity and eventudllyv gangs the
high - trequency modes that are part ot the physical tlow teld mstde the notor. Soreover,
such artiticial damping can be comparable in aapnitude to the usual net pains or lasses ot
Acoistic energy  in rocket motors; nence, ats presence aoula seooushy it the valhty ot

the results.  In addition, use ot an artiticial viscosity woulg hatmper cettorts to determme

o Levine and Cubick, (e Gt

e Lapndus, ., "\ tretached Shock Calculation by Second Cirder Dingte Ditterences,” o ot
Compe Physe, Vol 2, ppe 154 -177 ) 16967,




ooy mometatlizea solid propellant rocket motors.

the actual damping ot gas phase o
In this conee Con, it should ve pointed out that  shiock - titting schemes that treat the
shock as an internal boundary are impractical tor tins application, due to the larze nuntaer
ot shocks traveling, interacting, and retlecting inside vartable crass=sectional area motors,
Sindlarly,  tinite  ditterence  schemes  (such as  the \~~.~,chmnv(i ar the split=coetiiceernt
,m'li)m:’”) that are awdeled atter and exploit the mathematical theory ot the method ot
characteristics  are  bapractical  tor our  speditic problemn, shock =capturing  implicat
ditterence  schanes otter no particular  advantage  tor the present proble s, since the
pivsical  problem ot interest  requires tune  resolution consistent wath o the stability

restrictions o explicit methoos.

SO Grseven vedrs ago, the tash ot tinding a saitable tinite ditterence schee wotld
have bween virtually impossihle, as then enisting methiods such as
. ) 10 [} . 12 . )

VaCl ormdch, Lax=wnenarott, Godunoy, ete., lackea the requirea qualities, S e
then, however,  several  specral schemes  aestgned  to achieove  shock  resolution  withouat

“wiggles™ were developeds Among them are the Flun~Lorrectea- Transport scheme ot oors

13 T4 . .
and Hook, Chorin's implementation ot Glimm's method, the Upstreans Centered sciwan

7. Moretti, G, "lthe Choice ot g brae Dependent fTochnique v Gaas Dvnanies,” Py
Report b9 -26, Polytechmical nstitute ot brooklyn, july 1904,

O. Moretti, G,, "The g-Scheme,” Computer and Fluids, Vol. 17, 1979 ppe 1491 =205,

Yo Chakravdrtin, So K., Andersonr, Do A and Salas, Mo b, " The Split -Coetticient Wiatrin
Methoo tor by persolic Svstems of Gas Phnamic tquations,” A3\ paper S0-0260, presented
dt the 18th Acrospace Sciences Meeting, Pasadena, Calitornia, januany 14 -Tou. 1980,

e stactomack, he Voo, " Proceedings ot the Second International Conterence o Numernical
metaads i Hlod Oyvnamies,” lecture  notes o Physics, s ol td ol o,
Springer=Verlag, New York, 1970,
11, tay, bo tie and wendratt, b, "Systern ot fonservation Taws,” Comime Pure Appl. sath,,
Vole 14, 1960, pp. 217-247,
2. Godunov, S. ke, “hmite ontierence SMethoos o Saanerical  compatations ot
Dascontimuous  Solutions  of  Tquations ot Pludd Paynandes,”  stathe Syvse Nolbe 407 1ahy,
e L1 =240,

13, Bons, Je Pooand book, e Lo, THloxy Corrected Transport T stimmaen frror
Mpaornithms,” 1o ot Comp. Physios, Vol 20, 1976, pps 397 -3141,

Pd. Chorn, Ao f., "Random Chaice Solotion ot bwperbobic Systenm, T fe ot o Py s,

Mol 20, 1976, ppe D17 =543,
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of Vam-Leer,.l the Hybrid Scheme of Harten and l.»ms,u’ and the Artificial Compression
Scheme o Harten.17 All or these schemes are finite difterence approximations to the
derivatives arising in  the conservation laws and can treat an  arbitrary  systemn of
conservation laws. In addition, they are all tixed yrid methods dnd cdan autonatically
handle mteractions between waves of ditterent tamilies. In order to evaluate the
suitability ot the aforementioned techniques for the present purpose, their ability to treat
a numnber of simpler, but related, problems was examined. The results of this investigation
are summarized in dection 3. lhe finite difference scheme judged most promising was
then incorporated into the nonlinear instability program described by Levine and (.ulick“’l.
The results of a number of nonlinear instability solutions are presented to demonstrate the

eftectiveness of the new technique.

15. Van leer, B., "lowards the Ultimate Conservative Difterence Scheme I,
Lpstream-Centered Finite-Ditfference Scheme  for Ideal Compressible Flows," ]. ot Comp.
Physics, Vol. 3, 1977, pp. 263-275.

16. llarten, A. and Zwas, G., "Self Adjusting tiybrid Schemes for Shock Computations,” .
of Comp. Physics, Vol. 9, 1972, pp. 568-583.

17. Harten, A., "lhe Artificial Compression Methoa for Computation of Shocks and Contact
Discontinuities: 111, Self Adjusting tiybrid Schemes,” AFOSK Technical Report TR=-77-00659,
March 1977,

1%. Levine and Culick, Op. Cite




SECTION 2
LEST PROBLEM RESULTS

2.1 SHOCK TUBE PROBLEM

As a first step in evaluating the various tinite difterence schemes, they were used to
solve the shock tube problem for the one-dimensional tulerian form of the gas dynamic
conservation equations for an inviscid, non-heat-conducting tluide These solutions were
used to rate the diftterence schemes based upon such criteria as resolution ot the shock
(i.e., number of mesh points needed to describe the shock discontinuity), diffusion and
smearing ot the shock and the contact discontinuities with time, stability, effect ot
Courant number, and computation time.

The results of the shock tube test case demonstrated the superiority ot the recently

. 19-23 . 24,25
developed techniques over ecarlier methods.” "<’

Based on the previously mentioned
criteria, the best method was a combination of three techniques. The basic scheme ot
Lax-Wendrofch was combined with a Hydrid scheme27 and the Artiticial Compression
Method.28 This method (Lw+H+ACM) was capable of producing very sharp shock waves,

without pre- or post -shock wiggles.

2.2 LINEAR WAVE EQUATION

The various finite ditference methods were also employed to solve a second problem,
i.e., the linear wave equation. The results were used to evaluate the relative ditfusive ana

dispersive crrors of the schemes tor harmonic standing wave propagation atter many wave

19.  Boris, Op. Cit.

20, Chornin, Op. Cit.

21. Van leer, tUp. Cit.

22. iarten and 2was, (p. Cit.
23, Harten, Op. Cit,

24.  MacCormack, Op. Cit.

25.  Godunov, (p. Cit.

26.  lax and “Wendroff, Op. Cit.
27. Harten and Zwas, Op. Cat.

28, Harten, Op. Cit.

10
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cycles. This probfem was also used to assess the ease ot implementation ot boundary

conditions for the technigues considered,

the linear wave equation solutions demonstrated that the mapgnitude ot the dittysive
and dispersive errors varied significantly trom one method to another. The Dav+ti+ A0\
combination method produced excellent solutions to this problem, with fittle error evident

after many wave cycles.

2.3. WAVE PROPAGATION IN A CLOSLD 1UBLE

The tinal test leading to the selection ot a method to be atilized in the nonlinear
instability program was the solution ot the one-dimensiondal, nonfinear hyporbolic equations
describing  finite  amplitude  wave and  shock  propagation in a closed end  tube. By
establishing different initial conditions, it was possible to compare results obtained with
the various technigques tor problems ranging trom almost linear (small initial disturbances)
to highly nonlinear (large disturbances) conditions, over a large nomber of wave cydles.
In addition, results obtained with these techniques were compdared tor probleas such as
mteractions of ditterent wave tamilies and the ettect ot change in grid size and Courdnt

nunber upon the frequency content ot the scheme.

Some ot the results of the last test problem- ~finite amplitude wave in a closed
tube - ~will be presented to illustrate some ot the ditterences between the technigues.  As
a result ot the numerical error associated with tinite ditterence methods, each technique
acts as a numerical tifter.  The "tiltering” eftect ot cach ot the techniques is a ditferent
tunction of frequency, mesh size, etce (o enhance the ability to discern these ditterences,

the results of the test problems were spectrally analyzed.

Ligures 1, 2, and 3 demonstrate the eftect ot nunerical technique on the time
evolution of acoustic pressure amplitude at an end ot a closed tube.  The solutions were

initiated with a first harmonic standing wave perturbation having an amplitude ot 200, ot

the mean pressure. The numerical schemes ased in the figures were the D tis O

method  (Fig. 1), the MacCormack  scheme  (Hige 2)  and  the Rubin and  Burstean
29 . . , , ,

scheme™ 7 (Fige 3).  The evolution of post -shock wiggles into erroneous higher harmonics s

evident n the latter two cases. Spectral analyses of the results shown i Foures 1, 2

'

and 3 are presented in figures 4, 5, and 6 respectively,

29. Rubin, t. L. and Burstein, S. /2., "Hitterence Methods tor the Inviscrd and Viscous
tquations of a Compressible Gas,” Journal ot Computational Physics, Vol 2, 1967, pp.
178-96,
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with the Ly +ii+ WM technigque, the inttial sine wave  disturbance  develops into g
J sharp, triangular, shock =type wave torm (big. 1. fhis 15 the expected result based on
the closed torm analytical solution to this problem, according to Morse  and In;;_;:rd.l’U
Figures dd to 4d present the time variation ot the power spectral density contamed n
each node.  These tigures indicate that higher modes up to the T1th are excited.  bigure
4e shows the tine variation ot the accumulative power spectral density and indicdates that
tor this numerical scheme there are no erroneons shitts ot power spectral density i the
high order inodes.  The acoustic energy distribution varies little with time ,once a4 shock s
torined;, as expected.  The transter of energy trom the tundamental into the higher modges
results from the physical process ot wave steepening. lhere is no physical process tor

transterring energy the other way, i.e, trom hizher modes into the iunadmental.

Figure 2 shows the time evolution of acoustic pressure amplitude at an end ot g
o

closed  tube when atilizing MacCormack's  scheme. \n o expanded  view ot the  acoustic
pressure anmplitude between nondimensional times ot zero and titteen s shown i Figure Zb.
ihe development ot the initial post shock "wiggle,” that appears after the first cycle, into
erroneous higher odes s evident.  An expanded view ot the acoustic pressure amplitude
vetwveen nondimensional times 50 and 60 (Fig. 2¢) shows that the dacoustic pressure wawve
torm that  at  earlier times contained TT-T2 harmonics, has now been reduced to 4
wavetorm composed ot 4-5 harmonics only. The absence of the higher harmonics s
evidenced by the discrete humps i the waveforme  This trend is also substantiated by the
spectral analysis of tiis solution {shown in Figs. 5a through Sed.  tigure 5b indicates an
excessively high percentage of acoustic energy in the cighth and ninth harmonics, At the
end ot the test (after 30 wave cycles), it is shown (Fhig. 5d) that this excessively hiah
percentage oi  acoustic energy has been transterred to the titth and sixth harmonics,
Since, as previously mentioned, there are no known physical processes that can cause such
a transition of energy from a higher muxie to a lower mode, this phenomenon s apparently
a result ot nunerical errore Figure 5¢ is another way ot demonstrating the sae spurious
result.  Hence, the time variation in the accumulative power spectronr is g resuft ot the
dispersive error ot the numerical scheme which causes pressure signals to travel at the

wronyg speed.

The results obtamed utilizing the Rubin and Burstein scheme (Figs 3 and 6 are

generally similar to the results obtained by utilizing MacCormack's scheme (s 2 and o,

3. Morse, Poosi, and Ingard, ke V., Theoretical Acustics, MoGraw Hill Book Conpany,
New York, 1968,

23

b

L

- e



i o kb5 e i) A IR~ i i A

A comparison of the resalts indicates that the first post-shock wiggle appears atter the

third wave cycle (RB) compared to the tirst wave cycle (with sacCormack).  Also, the
percentage ot energy contained i the tundamental mode s greater, and the erroncously
high eacrgy in the higher modes s somewhat less with the Rubin and Burstem schemes In
this coonection, it should be mentioned that  very similar resalts to those obtameda by

utilizing the Rubin and Burstein scheme were obtained with the ax=Wendroft scheme.

Ihe accumulative percentage of power spectral density  contained in the respective
Narmonics  tor the nondimensional time ot 7.2 to 14.89 is shown in tigure 7 tor tive ot
the numerical schemes constdereds The superority ot the | W+ combination scheme over
the  standard schoemes is  evident, the addition of the artiticial compression to this
combination serves to sharpen shock transitions by exciting higher harmonics that were over
damped by the addition ot the Hybrid scheme. Thus, compared to the 13 and Hyorid

result, the Lw+H+ACM  solution has  slightly less energy in the tundamental mode  and

shightly more energy in the nigher harnmonics,

Al ot the carlier methods, j.e., MacCormack, Lax-Wendrott, and Rubin and Burstein
were used without adding an artificial viscosity.  lhe eftect of an artiticial viscosity on
the solution was investigated using Hymdn'sH predictor -corrector scheme.  Results utilizng
this method with two ditterent artiticial viscosity coetticients are presented i Figures o
and 9.  the addition of an artificial viscosity to a nuwnerical scheme was conceived as a
way to damp post -shock oscilfations.  Artiticial viscosity reduces post shock oscillations at
the expense of the higher harmonic components of the wavetorme  Figpure 8 shows  awhat
happens when a high value ot artitficial viscosity 1s employed (8 equa! anity in Hyman's
method).  In this case the high artificial viscosity prevents a shock from ever tormmng and
the deviations trom a pertect sine wave are never large. The results ot the spectral
analysis ot this solution (Figs. 8b and 8c¢) show the absence ot higher harmonic content.
Reducing the artificial viscosity coefticient (& =0.3, the lowest value at which itviman's
method remains stable) yields a mnuch steeper waveform (Fig. Ya), but one whose higher
harmonic content s still less than it should be (Figs. 9h and Y¢).  As time passes, the
action ot the artiticial viscosity continues to damp preferentiatty the higher harmonics,

causing the solution to turther degenerate.

31, Myman,  fames Mo "On Robust and Accurate Sethods tor the Caloulation ot
Compressible Hluid Hlows,” Part | to be published.
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As mentioned earlier, artificial viscosity schemes would hamper ettorts to determme
the actual damping of gas phase oscillations in metalized solid propellants. 1o illustrate
the similarity between the effects ot pdrticles and artiticial viscosity, the previoush
described closed end tube problem was moditied by the addition ot 2, tpdarticle to gas
weight tlow ratio) of 5 micron particles.  The computed results, obtained with the Kubn
and Burstein scheme, are shown in Figure 10. Comparing Figure 10 to Figure 3 shows that
the initial post ~shock wiggles {Fig. 10b s an expanded view) did not develop mto discrete
humps in the wavetorin.  As expected, the spectral analysis tor the particle case did not
show the high erronecus spectral content in the higher hamionics.  With particles present,
the damping of the high-trequency content of the waveform is due to a real phy<cal
process. This is in contrast to the similar, but nonphysical, action ot an artiticial

VISCOSIty.
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SECTTON 3

MOTOR SOLUTIONS

The test problem solations were used to rank the various methods  accoraimyg to the
previously  mentioned  Criterid. tt was  concluded  that  the Lax-wendrott  + inbrg -
vititicial Compression scheme yielded the best resalts, thus, this scheme was incorparatea

. _ A
nto the nonlinear mstability progran aescnbed by tevine ana ©Cualick.

Fhe quasi=one —dinensional, two-phase, equations ol cotion tr be solved are shown o
Fosure 11 an conservative  tonn. The  propetlant piroperties  and  otor eninetry
covhinanically pertorated gran s 59.7cins ey anches dom o aere taken troon Devine  ana

33 ‘

Cuhien to tacihitate comparnson witn the carlier resalts, betore presenting the results ot
the motor solations, ot shouls be wentioned that, 1or the motor, jropeliant aaa operatng,
condiitions utithized, a4 linear stabibity analy sy shows the tundaoental owsse G e unstuatle,

white all o1 the higner wnodes  are stable, tC shoula also e pomted oot that ot the

present tiuae velocity coupling ettects are not mcluaed e the nonlimear mstability o, o,

bagure 120 shows the pressure time histony at the head eng ot the oaotor caloalates
st the DA+« O schere and dn instial tiest mode aisturbance amphitoce ot ted or the
AN pressure. the carly history trom t = O to 1y nonGioensional tone s shown o

cxpanded torm an bigure 12he The oatially smosordal wave o seen G alrost imnediately

unde o transition to oo sharp, oscitlation tree, shock ~tyvpe wavetonnae bpane 1200 shoa
the pressure hastories both at the head end amnd conter ot the aotor Tor the tene nterny !
U 30t o dn thies tuoe mterval, the wave teaches o Tty aaphitodes b cacimation

Ot the phase ditterencos between the pressure at arf terent  Jocations e ates that fr

salution s nether o standimg wave, ot o traveling swave, but 0 coabiaton ot oth,

(e sane problen was solved usep the calan ang baestern soomcoae the et

, i
cogdoved o the ornamal o progran by Levie and Calick, Paaures Tha, b 0 shosw U
head end pressure history and Hlustrate the developrnent ot the atial post = shock aaele

to an eroneous second mode oscdiaton,

32, Leviae amed Culick, ot
$4. tod,
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The marked mproverent obtamea sith the noa solution scherme tor this severne 1

l
‘ Cave vas 2ratitying,

Lo examine the cttect ot amtial disturbance amplitude, the same pronien was woie
using the Lo +tis Aosy sobeme and mtial teest mode disturbance amplitudes ot 902 ang ol
Ot the  medan pressare. The tiead end pressure histories tor these cases are shown o
Frigures 14 and 1 respectnelve o all three cases, O3, 0.2, and 005 mntial vnplitue
shown i bgares 120 T4 and by respectively ) the solation reaches the  sarae Dot

arplitude ot aboat 12 o1 the mean pressures Lhis result was quite surprisimy o vie
ot the results in o Doevine and (u(u'k“ which demonstrated o strong ettect ot mitigl
desturpance on Lot amplhitide. the explanation dappears to lie i the tact that  the
present solutions were tor zas only, while the earlier solutions were tor the samne aotor,

operating conditions, and propellant, but with 15 0 alonmen added 0036 particle gas weaght

tiow ratio).  tence, it scems that nonlinear particle damping ettects play o oritical role

in establishing limiting amplitude.

The spectrdal analysts results correspondmyg to the 0,05 aaplitude case are shown o
Frigu.ces Toa through  Toua, These  results clearty  demonstrate the excitation ot hisher
i3 -

harinanics s the original disturpance grows and steepens.

A amportant application ot nonlinear instability analysis 00 the prediction ot motar
response o pulse type disturbances,  The Tevine and (‘u|i(‘k“’ nontinear instability Hrogra o
has g lenited abnlty to generate palse type wavetorms it will bhe expanded soon ;. I his
Capability was ased to test the ability of the Tw+H+ACM method to treat such problems,
The  resalts ot two solutions will be discussed. In both cdses, the  trtial pressure
disturbance wavetorm was taken to o ot the tornm _sm(’ NS with an amplitude oqual to
Uad of the mean pressure, This produces the centered, syimetric wavetorm  shown  in
Fgure 17, the ditterence oetween the two cases was the initial velocity at t = 0. In
one case, the velocity was taken to be  SPS while i the second case, the veloesty
(nondiaensional . was taken to be zoro. The tirst case represents a traveling pulses The
valiue ot veloaity s taken such that the imitial pulse ropresents a right traveling wave,*
the second case corresponds to o "standing” pulse.  The pulse propagates as the sa ot
equal ettt and night traveling waves, each having halt the nitial amplitade.

5. Ibnd.
e londs

*Actually setting v o2 P only produces a pure and rght traveling wave o the hinear
fait as PP approaches .
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Figare 17, Axial Variation of the Noarmalized Pressure Amplitude of  the

Puise.
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The calculated pressure histor es gt the head end ot the moton tor cach ot these

disturvances are shown in bigure "8 traveling) and Pgare 19 stanainy o The dra nat i
ditterence between the results demonstrdates the amportance ol the velooity Gisturhance
associdted with a pressure pulse. the traveling pulse s moeediately  toans! rnea o
steep-tronted shock type wavetorn and decays antil it reaches the same hoatiog aeonbit oo
as the solutions started trom tirst mode smusoidal disturngnees. Spectral analyces o Cos
solution tor three time intervals are showe o bygures 200 o 200, A earby times g,
204) the traveling pulse disturbance contamed 1 large percentage of the tandamental, ot o
signiticant  higher haunonic content 1> also  evident, As the liting ouphitade was

approached, 4t later titaes, the percentage of energy 0 the tundamental o eeased.

The pressure history ot the standnry pulse disturbance is shown e Frgare T, it
time  vdaniacion ot the wavetonmn s quite comprdex wr thils case, Fhe  spectral matysis
results shown in Digures 214 to 27¢ help to clarity what s happemmnge A carly times, g
symietric standing pulse centered 1 the motor contamns essentiathy  only  even harownoi s
(hige 214y, with the second hannonic domimating,  The fandamental and odd hanmone s arne
mtiitesal at this time.  Sice only the tundamental s ganstable tor this oaotor, the even
harmonics decay with time, while the tindamental begms to grow. o the tane ntery o
trom about t = 20 to 40, ‘he wavetonm becomes complex as at transitions trooae g steep
second  dominated  wave  to an almost  sinusosdal owave  at o the  tundaiental  trequetoy .
Recently, this solution was cortinued out to o pomdimensional time ot Tao, the  wave
continues to decay out to a tune ot about 100, At tus tine, the wave ampditade s only
lob', of the mean pressure (compared to 407, amtially ) and the wave s essentially g pure
tundaraental sime wave, Mter = 100, the wave starts to grow, and as st groawmyg at
t = 140, As the wave prows, higher harmonic content apain bhegins to appedar ds a result
ot energy transter trom the tundamental. it as expecied that the oscdbation will continage
to grow until 1t reaches the same Tinting amphitiede as the other test cases 1o this notor

and propellant.
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opective - b develop o metaod capable ot o solving steep - Tronteo nonlinear

T ot

astabieaty prabdenas e soobedloss tactical rocket motors, has been accomplishea

et ol taetods ttoduc e erroes, and the numcericdl o methoa and the phiv s al
. 1]

foslaiee Cooone sodved necd to e mat, heds For the present ;,rul)lt"n, A methog hased on the

Cortataogs ot Ui AT ae it riv o, ang Nrtitical Compression schemes s tound o

“ apetior T the otier scheines testeds 1t has been shown that thirs schieme s capable

Poodesc i 4 Stots s a0 saars ascontiunty without . cenerating acbiticial poe- o or st -

SSRU IR SRR EN ] NS STRTIRNS Phe raethiod does ot redy on the ase ot an artitc il viscosity g ts

aaf e U reservoy the nph-trequetiy s content ot the wavetorms., Ihis  cominmation

Pectimine can alsa treat the retlection ot shocks trom poundaries  and s sinall Jhttusive

i it stve e rrors even alter o andamy vave oy les.

Foe oty to anabyze spectrally the computed results was aaded tao the nonlmear

IR TR NN ] E O TN SRR s Capain ity sunplities the interpretation ot compleon wavetornms ana
| S | I ' i

A Tacintate comnpanisons ot nator data and with the resalts ot approsunate nonlinear
tel e,

Sroaadition to the amphitade,  wavetornm,  and  location ot the pressure pulse,  the

et s ot e assocated velooity disturoance are also very important o detergning motor

response - even whea veldooity couphing s not consigerea.

e salution ot the mstabality problean without particbes reached o Tt amphitade

sevcnig by andepeadent ot the oatial disturbance amplitude anag wavetorni, barlier

calculations st particles, bowever, showed Tomting amphitode to be o strong tunction ot

the ontal Bistafaance. thus, st appears that nonhimear particle damgong, ettects play o

stnitcaat o rale g aetermnmy the hontimy aonphitade ot oan onstabilay,

Fne s ot artitic sl wiscosity resalts m the nonphysical attenaation ot the fush

barmonn s, inos, the use of g nunencal methoa whieeh o rehies onan artitie il viscosaty to

the solation to

damp post =shock oscdlations s oot recorended tar problems that require

Ctene OV T iy avane oy e,
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PABLE b SYMBOLS

CrHss section ared
gdas only . sound speed
specitic heat ot pas at constant pressure

specitic heat of solid prope’ ant

particle~gas interaction torce per ounit volime, tor the

g roup
mass flux fraom bucaing satace
number Hf particle groups

pressure

particle gas heat transfer rate per unit volune,

B IOUp

tanperature

flame temperature of the propellant
tenperature at the propellant surface
backwall temperature of the propellant
t ane

velocity

th particle

tor the (th particle

velocity of the combustion products as they entee the main tow

axial componeat of ug
axial distance

total particle to pas weight flow ratio,

particle to gas weight flow ratio of the i

pas onl isentropic exponent

density

particle proup

mdass burning rate, per unit lenpth, per unit cross sectional area




TABLE OF SYMBOLS (Continued)

Subscripts

f flame

B gas

i ith particle group

S at the burning surface
t at the nozzle throat

ERGaES, -

k5
&







